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BEND?lJGAND SHEAR

ARREST OF THE

STRESSES DEVELOPED BY THE INSTANTANEOUS
.

ROOT OF A CANTILEVER BEAM ROTATING

WITH CONSTANT ANGULAR VELOCITY ABOUT A

TRANSVERSE AXIS THROUGH THE ROOT

By Elbridge Z. Stowell, Edward B. Schwartz
and John C. Houbolt

SUMMARY

A theoretical Investigation was made of the behavior
of a cantilever beam in rotational motion about a transverse
axis through tk rdot when the rotation of the root is
suddenly stonqed. Equations are given for determining
the stresses, the deflections, and the accelerations
that occur in the beam as a result of the arrest of motion.

The equations for bending and shear stress reveal
that, at a given percentage of the distance from root
to tip and at a given tip velocity, the bending stresses
for a particular mode are independent of the length of
the beam end the shear stresses vary inversely with tlm
length. When examined with respect to a given angular
velocity instead Of a given tlp velocity, the equations
reveal that the bending stress is proportional to the
length of the beam; whereas the shear stress is independent
of the length.

Sufficient experimental verification of the theory
has previously been given in connection with another
problem of the same type.

INTRODUCTION

Stresses occur in the structure of an airplane as a
result of th shocks experienced in landing. These
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shocks involve a ruthsr dudden ohange in the motion of
the airplane or its component parts.

~ reference 1 a theoretloal and experimental
Investigation was made of t~ behavior of a cantilever
beam in transverse t~anslat~onal mot$on when the root
of the beam was suddenly bdought to rest. Equations
were given for determining the stresses, the deflections,
and the accelerations that existed throughout the beam
as a result of the impact. Experimental verlflcatlon
was presented for the theoretical equations.

Shocks involving changes in rotational motion, as
well as shocks involving ohanges In translational motion,
may be experienced by the airplane. The fundamental
theory of reference 1 has therefore been applled herein
to an arrested cantilever beam; the only change is that
the initial motion arrested is rotation about a trans-
verse axis through the root.

As in reference 1, the present paper Is based on
the usual engineering beam theory. M this theory, the
deflections are considered to be the result of bending
alone and shear deflections are.neglected. The theory,
as applied to ordinary beams, gives reasonably good
results as long as the distance between inflection
points is greater than a few times the depth of the beam.
When this theory for beam action is used in vibration
problems, such as that In the present paper, the results
are satisfactory for those modes of vibration for which
the nodes are not too close together. Because the
theory of the present paper is basically the same as
that of reference 1, the experimental verif’ioation
given in reference 1 may reasonably be expected to
apply to the present equations. Additional experimental
check was therefore considered unnecessary.

SYMBOLS

E

Y

A

modulus of elasticity

weight “densityof material

coefficient of equivalent tiscous damping of
material
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c (r)veloolty of sound in material 4
-.,-....-,.-_-T.,.. Y,,..

g acceleration of gravity “.
,.

L length of beam

I moment of Inertia of cross section of beam
about neutral axis

A oross-seotlonal area of beam

P

x

Y

t

P

n

radius of gyration of

beam
(F)z

coordinate along beam

distance from neutral

time, zero at Imnact
d

operator ~

cros,s”section of

3

measured frcm root

SXIS of beam to any fiber

Integers 1, 2, 3, etc., designating a particular
mode of vibration (used as subscript)

nth positive root of 1 + cos Ocoshe=O

undamped natural angular frequency of nth mode,

radians Der second
~)
pc $

damped natural angula~ equency of nth mode,

, (%;&?-radians per second

:::,~jg~’:quenc’” ‘Sdefined

n ~lar velocity of beam prior to impact

W(x,t) deflection of beam at station x and time t

wn(x~t) deflection of beam at atatlon x and time t
for nth mode of vibration

I .—— .-—- .
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a(x,t) acceleration of beam at station x and time t

an(X, t) acceleration of beam at station x and time t
for nth mode of vibration

u(x#Y#t) bending stress In beam at station x, dlstanoe
from neutral -is y$ and time t

u~(x.y.t) bending stress in beam at station x. distance*.- - - - -

F(x,t)

7n(x,t)

An

%

Cn

from neutral ~is yO and time t for nth
mode of vibration

average shear stress over cross section of beam
at station x and the “t

average shear stress over cross section of beam
at station x and time t for nth mode of
vibration

bending-stress coefficient

shear-stress coefficient

deflection coefficient

RESULTS AND CONCLUSIONS

Theoretical Results

When a cantilever beam rotating with uniform
angular velocity ~ about the root is suddenly stopped
at the root, theoretically an infinite number of modes
of vibration are excited. With eaoh successive mode,
damping has an Increasing influence upon the frequencies
and amplitudes of vibration and, for suff3.cientlyhigh
modes, damping even changes the type of motion from
oscillatory to nonosclllatory. In the lower modes,
however, damping has little effect and only terms of the
first order in damping need to be included in the
equations. Only the equations applicable to the lower
modes, which alone are of importance in any practical
case, are presented In this section. A more complete
treatment of damping is given in the appendix.
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angular frequencies (2W times the tiquency In
gtven by the equation --

(1)

where en has the followlpg values for successive modes
of vibration:

‘1 = 1.!375104 ‘5 = 14.137168

e2 = 4.694098 ‘6 = 17.278759

e3 = 7.85h757 en=~ 2(2n-l)Tr,n%

‘4
= 10.995541

Th3se values of 9n, which are the same as those given
in reference 1, are characteristic of a cantilever beam.

The energy that the beam possesses before the motion
of the root is halted is consumed in excltlng the various
modes of vibration and is distributed among the modes as
follows:

Mode, n Percentage of energy

97* 07
: 2:$:

2 .08
5toti .07 .

!lhisdistribution of energy among tie various modes of
vibration is presented graphically in figure 1.

Expressions for the bending stresses, shear stresses,
deflections, and accelerations are of the same form as
the expressions given In reference 1 for these quantities
except that the velocit~ of translation v is replaced
by the tip velocity ~ and we coefficients An, ~,
~d Cn ham new values. For the nth mode of vibration
these expressions are as follows:



6

For stresses and deflmctlons,
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(2)

For accelerations, when damping Is sufficiently small,

an(x,tl = .Unzwn(x,t) (5)

The variations of the dhenslonless coeff’lclents An,
Bn$ and Cn with position along the beam x/L are

f
lven for the first three modes (n = 1, 2, and 3) In
l~gcuwa2 to 4. The highest absolute values of An

and ~, and hence the highest stresses, occur at the
root of the beam. These values, for the first three
modes, are

The foregoing values of An and Bn at the root are
presented graphically In figure 5.

When the effects of damping are neglected, the
maximum valuea with respect to the of Un(x,y,t) and
Tn(x,t) aasoclated with the nth mode of vibration are

(6)
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Equations (2) to (5) for stresses, deflections,
and accelerations give the values associated with the
nth mode of tibration. Since all modes of vlbratlon
occur simultaneously, the net results are the super-
nosltion of the effects of all laOdeS. This super-
hos~tion gives the following equations: For bending
stress,

$lLa(x,y,t)=—
0

Wr averaga shear stress,

/
A@ ~22
-— t -— t 1

Tor deflections

( w12t ~ 22
-—

W(x,t) -+: ‘—
t

Cle 2E sinult + C2e =
)

sinU2t + ... (10)

~r acceleration, when damping is sufficiently small,

( )Lq2~ ~22

~LL2 ‘—
-— t

a(x,t)-— — Cl~2e ~ sin~lt+ C#22e 2E
)

einW2t+ ... (Ii)
QP

for bending stress reveal that, at
of the distance from root to tip
velocity, the bending stress for a
independent of the lemzth of the beam.

The equations
a given percentage
&nd at a given tip
particular mode is
The equations for shear-stress reveal tha~, for a given
tlp velocity, the shear stresses at any station vary
Inversely with the length of the beam. men examined
with raspect to a given angular velocity instead of a
given tip veloclty, the equations for bending and shear

,,. ..-
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stresses reveal that the bending stress 1s proportional
to the length of the beam; whereas the she- stress iS
independent of the length of the beam.

Ihfluence of Type of Shock

The frequencies and deflected shapes of the modes
of vibration are characteristic of the cantilever and
not of th Initial shock. The type of shock, however,
determines the relative amplitudes of the various modes.
The amplitude of each mode, In turn, determines the
ener y and stresses developed by that mode.

%
In fig-

ure , arrested translation (reference 1) and arrested
rotation (present paper) are compared on the basis of
the distribution of defleotlons, energies, and stresses
among the first three modes. In the case of arrested
translation, about 61 percent of the total energy 1s
In the first mode; the first mode predominates as
regards tip deflection and root bendfng stress, while
the largest shear stress occurs in the second mode. In
the case of arrested rotation, about 97 percent of the
total energy is fn the first mode, and the first mode
predominates not only with respect to tip deflection
and root bending stress but also with respect to
maximum shear stress.

If the motion that 1s arrested is a combination
of translation and rotation about the root, the deflec-
tions and stresses can be found by superposing the
results for the translation and the rotation separately.
If tb cantilever is not perpendicular to the direction
of root translation at the moment of impact, the
translational veloclty used should be tie-component of the
root velocity perpendicular to tlm cantilever at the
moment of impact. The component of root velocity parallel
to the cantilever causes longitudinal vibrations but
such vibrations are not considered herein.

The equations given in this report and In refer-
ence 1 apply also to the cases In which the root of
a cantilever beam at rest is suddenly gimn a constant
angular velocity or a constant linear velocity in a
direotion perpendloular to the length of the beam.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va.
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APPENDIX “

THEORE~CAL IiERIVA!l!TOIT“-””’’’.”-““”‘“‘“. ‘

General analysis.- Consider a beam of uniform cross
seotlon in equlllbrlum. If a portion of the beam is
suddenly dlsturbed, as by a shock,the beam is set Into
damped bending oscillations. The equation of motion
for these bending oscillations is given by the dif-
ferential equation (reference 1)

~p2 &
~5W yb%=o.—

?)X4+ ‘P2 Xt+ 6 M2 .
(Al)

By using ~2 = E, equation (AI.) can be written
Y

(A2)

This partial differential equation is reduced to an
ordinary differential equation of the fourth order by

writing p = ~; thus

The general solution of equation (A3) is

(A3)

w= P cosh e~ +Qshhe~+Rc0813~ +s8ine~
L (4)

where d

“II*
The coefficients P, Q, R, and S are to be determined ‘
from the boundary conditions. The case under consideration

I
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is that of a cantilever beam rotating about Its root
with constant angular veloolty fi and hating the
rotatim suddenly stopped by clamping of the root in
nosition as the beam coinoldes with the x-axis. The
boundary condltions for this case are

(.)=o=(~)=L=(~)x=L=0

l!heangular velooltv of the root as given by the
boundary oondltion ~ - ~~ (discontinuous fumtlon) Is
represented graphloally in figure 7. By the procedure
adopted in reference 1, the solutlon.will be obtained
for the boundary condition

and the constant angular velocity $2 will be added to
lb resulting angular veloclty.

With the applioatlon of the bomdary conditions to
equation (&), the operational solution for the angular
velocity induced by -Qi Is found to be

O -Q Jb+=2(1 +Ooa e 006e}
[ ( )
(1+oose oosh(3)ooshe~ + oose~.

-.— . —.-. .
- : >( -...,.-: ~: . .. . . . .Ty-fr:-..~-a.a.... -.. .. ... ... ----- -.--T- .-—. “ - . -

. . . . . . . . - ---- .“. % :“.:. L .-:5#F-; :.f ’ . :1 .”.. “l..



rnternretationof tbls operational expressia by use of the Heaviside expansion g
theorem and addition of tie constant angular velocity 0 gives for the total b
sngular velocity

where

%

A(l)n

2E

r

An
l-—

&
G

nth positive root of 1 + 00S e oosh 0 = O (all roots -
namely, fe

?
Snd *iBn - have been oonsldered in the

Interpreta ion)

undamped ~tural an&iLar frequency of nth mode,
radians/seo

damped natural angular frequency
radlans~seo

of nth mode~

.

Integration of equation (A5) with respect to x gives for velocity
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Integrationof equation (A6) with respect to time with the condition (W)t=o = o
gims for the deflection (when t~o)

where

t

sin ~ltl (fL7)
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The contribution of’bhe nth
- is -

. CILL2 1
Wn(x,t) ‘—C*

CP

r
1- ‘3

b2
b).

. 13

mode to the deflection

When =>1, equation (A8) may be put
2E

in the form

where now

The form indicated by equation

is characteristic of the lower modes
damped oscillatory motion.. The form

*<

‘n ‘hich 2E
and represents
Indicated by

1,

A(dn
equation (A9), in which ~>1 (damping greater than

GL2

critical), is characteristic of the higher modes and
represents subsidence motion.

The comnlete behavior of the cantilever may be
determined from equattons (A6) for velocity and (A7)
for deflection. The quantities of interest are the
bending stress, the shear stress, and to some extent .
the accelerations. When damping is present, the
equations representing the contribution of the nth
mode to these qumtitlea may be

!/
iven In the two forms

indicated by equations (A8) and A9). In subsequent
equations, however, onl~ the form indicated by (A8) Is
given, because this form is characteristic of the modes
that are of practical importance.

—. h



Bending stresses .- The bending stresses CJ(x,y, t) at any fiber located a
distance y fr~ the neutral axis are

m

t)2w = z ..
#H

t

o(x,y,t) = EY— % 1 /-= ‘in”@
~X2 o p n=

r
1- 9L

where

( )(

@?

) (
ooshQn sinen - sinhQu cos ~ ooah8 ~ + oosen~ - sinen sinhen sinhen~nL + she =llL

& .2 )

( )
%2 cosh~ sinen - sinhOn cosen

The contribution to bending stress of the nth mode Is

Average shear stresses.- The average shear stress on the cross section is

A~N2

9



*

The contribution to shear stress at’the nth mode is

Accelerations.-Frcsnequation (A6),with the aid of the relation

PF(t)1 = F(())p~+ Ft(t)~

the acceleration anywhere on the beam is fcund to be

()7AJ)n2
O.&l-—

&$lLL2 m
Cn 28-——

~P n= .

Lwn2
e-X t(sinun~t + Cos

.

4.

0
.

G



With the ald of the orthogonal properties
to show that

The linear accelerations

The contribution to

()
w

of the function Ffln~ , it is possible m

x.- =
Lo

are therefore always finite.

acceleration of the nth mode

A4n2
1 -—

S2LL2 2E2
an(x,t) ‘“— — ‘n2Cn

CP

r

Azwnz
l-—

4#

Comparisonwith the expression for

Wnft + E

h2(J)n2
1 -—

2E2

Cos

wn(x,t) from equation (A8) shows
acceleration for each mode is out of phase with tlm deflection. When
1s sufficiently small, however, the relation between the acceleration
deflection reduces to the well-known result for undamped vibration

~(X, t) = ‘On2 Wn(X,t)

that the
damping
and the

.
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1. Stowge,C~~bridga Z., Schwartz, Edward B., and Houbolt,
Be.nd&ngand Shear Stresses Developed by

the Ihs~antaneous Arrest of the Root of a Moving
Cantilever Beam. NACA ARR NO ● @127, 1944.
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